

196

Volume 41, 2014, Pages 196-216

© The Graduate School of Education

The University of Western Australia

How Students Experience Learning to Program

Rachel Cardell-Oliver

The University of Western Australia

This study seeks to understand how students experience learning computer

programming, and the implications of those experiences for the quality of their

learning. In order to identify the essence of the experiences, different types of

artefacts produced by students during teaching are analysed including program

code, programming assignment demonstration interviews, course feedback

surveys, emails, and comments written on examination papers. The main

contribution of this paper is the description, using narratives, of four distinct

student experiences of a first programming course: thriving, surviving,

drowning and lost. Each narrative shows a unique combination of effective and

ineffective learning behaviours.

Introduction

Students’ experiences of learning computer programming are varied

and complex. Whilst some students thrive, others struggle to make

progress. This problem has been observed and analysed in many

research studies (see Robins [2010] for a review). A symptom of the

problem is higher than usual rates of both failure grades and high

grades in programming courses. However, there is still little

consensus on the reasons that student outcomes differ so widely. Few

studies have focussed on the different ways in which students

experience learning to program nor on how specific differences

affect learning. Therefore, this paper address two questions about

learning to program: What are the different ways in which students

experience their programming courses? and What are the

implications of these experiences for student learning?

 Address for correspondence: Associate Professor Rachel Cardell-Oliver, School of

Computer Science and Software Engineering, The University of Western Australia

(M002), 35 Stirling Highway, Crawley, Western Australia, 6009. Email:

Rachel.Cardell-oliver@uwa.edu.au.

mailto:Rachel.Cardell-oliver@uwa.edu.au

How Students Experience Learning to Program

197

Context

The context for this study is first year students learning computer

programming at The University of Western Australia, one of

Australia’s “Group of Eight” leading research-intensive universities.

Between 150 and 280 students each year take a 13-week course on

introductory programming in the Java language. This first

programming course uses a traditional mix of lectures and

laboratories. Formal assessment is based on practical programming

assignments and written exams with multiple-choice and short

answer questions. In the literature, this type of course is called a

CS1 (Computer Science 1) course.

I have taught and developed the introductory programming course

over the last five years. One novel feature of the course is that

software engineering measurement is embedded in the programming

laboratory classes. The aim is to provide students with detailed

feedback on the quality of all the computer programs they write,

while they are developing those programs. The formative feedback

provided is detailed and positive. It offers multi-faceted views of the

quality of the computer programs the students are writing. Feedback

is generated automatically by the same systems that are used by

professional software developers. The frequency and amount of

feedback is directly controlled by each individual. The properties

measured by the in-lab feedback system are also used as part of the

summative assessment criteria for programming assignments, giving

an unambiguous specification of what is required.

In previous studies I have investigated the effects of this type of

feedback on student learning. In Cardell-Oliver et al. [2010] I

demonstrated that the quality of the programs written by students

improves when they use the in-lab feedback. However, although

performance improves on average, I also observed that individuals

have different responses to the feedback. While some students

benefitted, others did not improve, and some were even hindered by

adopting unproductive learning strategies. In Cardell-Oliver [2011] I

showed how quantitative measures of students programs could alert

instructors to learning difficulties, including some of the

unproductive behaviours I had observed. In Cardell-Oliver [2013] I

Rachel Cardell-Oliver

198

contrasted quantitative measures of student programs with qualitative

evidence from project interviews with the students. This study

identified further contradictory evidence. Some students produced

reasonable programming assignments but in face-to-face interviews

they demonstrated poor understanding of core concepts. Other

students were motivated and worked hard but performed poorly in

assessments. The quantitative methods used were not able to capture

the complexity and nuances of such behaviours and outcomes. I

concluded that what was needed was a view of learning that

considers students’ social and emotional experiences as well as the

skills, knowledge and ability they bring to their study of computer

programming. These observations provided the motivation for the

current study, and in particular my first research question: What are

the different ways in which students experience their programming

courses?

Conceptual Framework

A conceptual framework for how students learn (Ambrose et al.,

2010) underlies the research design introduced in this paper.

Learning is viewed as a process that involves not only students’

skills, knowledge and abilities, but also their social and emotional

experiences. These factors work together to influence how

effectively students do or do not make use of the learning support

that is provided for them, and ultimately the quality of their learning.

Factors that affect learning are categorised in terms of students’

experience prior to learning a new subject and their experiences

whilst they are learning it. Students’ prior knowledge and how they

organise knowledge can either support or hinder their learning.

Learning is also affected by students’ current level of development

and the social, emotional, and intellectual climate of a course. During

learning, motivation is a critical factor that shapes, directs and

sustains what students learn. The quality of student learning is

enhanced by goal-based practice and targeted feedback. In order to

develop mastery of a subject, component skills are acquired and

integrated and students also need to know when to apply those skills.

Finally, students’ ability to reflect on and adapt their learning

strategies impacts their success. Students need to learn to monitor

and adjust their approaches to learning.

How Students Experience Learning to Program

199

This conceptual framework is chosen for several reasons that

resonated with my own experience of teaching computer

programming. The underlying assumption for this framework is that

learning is a developmental process that takes place in students, and

that learning involves changes, over time, in knowledge, beliefs,

behaviours and attitudes. Learning is shaped by how students

interpret and respond to their experiences. My aim is to answer

questions about the complexity of students’ responses to feedback by

allowing for the many different factors that affect how students

engage in the learning process. That is, as well as students’ skills,

knowledge and abilities, I consider their social and emotional

experiences. The principles for learning described in Ambrose et al.

[2010] are used to frame answers to the second research question of

this study: What are the implications for learning of students’

experiences of learning to program?

Related Work

This study draws on related work in two areas: studies of how

students experience the task of learning to program; and studies of

why learning computer programming, specifically, is so difficult.

This section summarises previous research in these areas.

Experiencing learning to program

Students conceptualise the task of learning computer programming in

a number of ways. According to Booth [1993], they may perceive it

as computer-oriented, problem-oriented or product-oriented. Or,

according to Bruce et al. [2004], some students perceive the task as

skill-acquisition, whilst others as problem solving and still others as

learning to participate in the computing profession. Each of these

perceptions is associated with an internal horizon and an external

horizon that represent the focus of the participants’ attention, and the

perceptual boundary of the category. In their study, Bruce et al.

[2004] found that a student who experiences the act of learning to

program as the acquisition of coding skills, for example, focuses on

syntax and practising coding tasks. Their perceptual boundary is the

realm of the programming language, without awareness of the

broader context of programming or of the professional programming

world.

Rachel Cardell-Oliver

200

Responses to learning programming are dominated by emotional

experiences and reactions. Kinnunen and Simon [2010] analysed

student reactions at each stage of their programming assignments,

from getting started, to encountering and dealing with difficulties.

Common experiences they identified included encountering

unexpected problems (“hit by lightening”), not knowing what to do

(“OK, what now?”), and not using feedback to guide actions

(“hamster wheel”). Kinnunen and Simon [2012] analysed students’

perceptions of their experiences, finding that some students had

negative perceptions of self-efficacy even after positive

programming experiences, whilst others had positive self-efficacy

even after negative programming experiences.

Determinants of success or failure

Students conceptualise the task of learning computer programming in

Many hypotheses have been proposed that aim to explain why some

students fail and others succeed in learning to program. One

approach to answering this question has been to use quantitative

methods such as regression analysis to investigate the relationship

between possible determining factors and student grades. However,

such studies have failed to identify specific factors that predict

success. Robins [2010, p37] reviews existing studies of this sort,

arguing that:

“[T]he typical introductory programming (CS1) course has higher

than usual rates of both failing and high grades ...[the] conventional

explanation has been that learners naturally fall into populations of

programmers and non-programmers. A review of decades of

research, however, finds little or no evidence to support this

account.”

Another line of research starts with the assumption that various types

of cognitive overload account for the problems that students

experience and that this can explain high failure rates. The

researchers argue that particular aspects of pedagogy (the way

computer programming is taught) lead to cognitive overload, and

therefore that new, research-led approaches to instructional design

will address the problem. Robins [2010] proposes a model called

“learning edge momentum” (LEM) to explain the phenomena of

How Students Experience Learning to Program

201

students who struggle early in programming units and never catch

up. He argues that tight integration of concepts makes learning to

program harder than other subjects because failure in acquiring one

concept makes learning other closely linked concepts harder.

Conversely, success in understanding a concept makes learning

linked concepts easier. However, Petersen et al. [2011] argue that

the LEM theory does not explain student outcomes in programming

courses. They review typical programming exam questions and argue

that most questions examine too many different concepts, and that

this lack of separation of concerns does not allow students to

demonstrate what they do know. In a similar vein, Caspersen and

Bennedsen [2007] argue that students have poor learning outcomes

because of poor educational design of programming courses, which

lack sufficient scaffolding and apprenticeship examples. They argue

that poor design leads to cognitive overload and so to student failure.

Kolikant and Mussai [2008] argue that students’ conceptions of

program correctness are flawed because of the common assessment

practice of marking programming assignments as the sum of points

for separate aspects of a program. This nurtures students’

misconceptions that partial correctness of a program is all that is

required.

In summary, researchers have shown that students differ in their

conceptions of programming, their emotional responses when

undertaking programming assignments and their perceptions of self-

efficacy based on those experiences. Researchers have argued that

cognitive overload, caused by poor design of courses and poor

assessment practices, explains why some students fail. However, the

question remains of why other students succeed. Little or no

evidence has been found to support the hypothesis that learners

naturally fall into populations of programmers and non-

programmers.

Method

This study addresses the question of how students experience

learning to program and how those experiences affect the quality of

their learning. A qualitative research design is used to answer these

questions because of limitations of existing quantitative or theory-

Rachel Cardell-Oliver

202

based research designs. Quantitative methods can measure what a

student produces, or measure certain characteristics of the student.

But they give no insight into why certain combinations are observed.

In previous studies I found that some students were able to produce

correct programs, and correctly answer multiple-choice exam

questions, but they demonstrated poor understanding of the material

in more open-ended assessments. Another type of research design is

to use theories of learning to account for observations about students’

behaviours and outcomes. But these do not capture the personal and

complex nature of learning. For example, poor instructional design

certainly impedes learning for some students, but others will thrive

none-the-less. My aim is to gain insight into why this is the case, and

so a qualitative research design is chosen since it captures the

complexity and individuality of the student learning experience.

Educational research performed by teachers in their classrooms

(teacher-researchers) is known as “insider” research, whilst that

based on systematic observation of teaching by an external

researcher is known as “outsider” research. Clearly the methodology

in this paper is insider research. The strengths and weaknesses of

each approach have been argued by McNamara [1980] and

Hammersley [1991, 2006]. Teacher researchers often have long-

term experience of the setting being studied (as in my case) and so

understand the history and contextual setting. However, this

knowledge can be superficial or distorted. The teacher-researcher

already has relationships in their setting and can use that to collect

further data. However, those relationships can exclude as well as

include others, and so may not include what is necessary for research

purposes. This study guards against the pitfalls by assessing the

themes and narratives against a general theory of student learning,

and by considering a wide range of student artefacts as evidence for

the themes.

Data

Many different types of data have been used for narrative research in

education (Connelly and Clandinin 1990). Whilst interviews with

students and teachers are common (Haggis 2004), researchers have

also used written field notes of shared experience, journal notes

How Students Experience Learning to Program

203

made by participants, and various types of documents. Studying

students’ experience of learning to programming offers new

opportunities from data sources that may not be available in other

educational research studies. In particular, many of the learning

interactions that take place in this setting are in electronic, written

form: students communicate with the lecturer and each other by

email or a web discussion forum, they submit all their written work

to an online repository, and electronic records of participation,

demonstrations and grades are maintained. Two sources of hand-

written artefacts were also used in our study: student course feedback

comments and their comments written on examination papers. Such

data might be considered low quality in some domains of educational

research. However, I argue that this data provided unique and

significant insights into students’ experiences. The comments

written by students on their final exam papers turned out to be a rich

source of “think aloud” evidence. For example, on their exam

question papers students often showed their reasoning behind their

answers, or showed areas of uncertainty by changing their choices

several times.

The data were selected from the 2013 cohort of 280 students at The

University of Western Australia studying introductory computer

programming in the Java language. All data were collected as part of

the normal routine of teaching this course and were used with

appropriate ethical clearance.

Analysis of Themes

Data were first analysed by reading through the different data

sources (learning activities, assessments, interactions and

observations) and identifying recurring themes. I considered each

type of data in turn, recording observed phenomena and the evidence

for each. Each type of data source provided different insights into

students’ experiences. Student comments written on their exam

scripts were particularly informative about the experience of weaker

students. These comments provided a form of “think aloud” evidence

about the thought process of the student. Comments from course

tutors about student responses during their project demonstration

interviews also provided such think aloud insights. Students’

Rachel Cardell-Oliver

204

comments on anonymous course feedback forms highlighted

common experiences about the aspects of the course students did and

did not enjoy and on their motivation. Email messages sent to me as

the course lecturer were received from only a small proportion of the

students. These interactions often concerned negative experiences of

not being able to complete an assignment or other difficulties with

the course. Programs and tests submitted for assessment were used to

cross correlate observations about students’ experiences with the

course outcomes for those students.

From the thematic analysis of the data I identified a number of

emotional themes: confidence, panic, satisfaction, frustration, as well

as degrees of success with the course as shown by final grades. Then

I selected eight individuals who were representative of these themes

and studied their data in detail, mapping their emotional responses

with their academic work in the unit. This identified themes such as

strong skills throughout, developing skills during the course, never

got started, and mistaken confidence. I could also link these with

specific experiences (e.g. from an email) for individual students.

The coded themes from these two stages of data analysis were then

used to construct the narratives.

Generation of Narratives

A narrative aims to describe how a given person, in a given context,

makes sense of a given phenomenon. Narratives are used to

illustrate the experiences of students learning to program. Three

dimensions of narrative inquiry are temporality, sociality and place

(Clandinin and Huber, 2010). Temporality in our study concerns the

past, present and future of student experiences during their semester

of studying programming. Sociality concerns personal (feelings,

hopes, reactions) and social (cultural, institutional) conditions.

Personal conditions are expressed through students’ own words in

their written artefacts (e.g. emails, assessments, web forum posts).

Social conditions are expressed in the narratives through the

institutional and the cultural expectations for university students and

their study at UWA. For example, the frank and informal exchanges

between students and lecturer that were commonplace for the cohort

in this study are expressed in the narratives. These interactions differ

How Students Experience Learning to Program

205

from those I have experienced when teaching in the UK and

Germany.

In the first stages of data analysis I identified clusters of ideas about

the experiences of students in the course. From these clusters, I

constructed short narrative accounts from the point of view of a

student. Writing these narratives involved the three stages of

broadening, borrowing and restorying (Connelly and Clandinin

1990). Broadening occurs when an event experienced by one student

is used to generalize about their emotions. Burrowing considers the

emotional quality of events and the possible origins for those

feelings. In restorying the researcher reviews the event being

described in the context of the larger significance of this event in the

life of the individual.

While all the examples in the narratives are taken from the data, they

have been combined and changed slightly so as not to identify

particular individuals. Quotations by people, such as the lecturer and

friend, who interacted with the student are used to reinforce the sense

of being there. Anonymous student comments from course

questionnaires and the online help forum were also used in the

narratives, although these could not be directly matched with

individuals. All other data sources were identified with an individual

and so could be cross-correlated.

Narratives on Learning to Program

This section presents the four themes identified in the data analysis

in the form of short narratives. Each narrative presents a student’s

point of view of their experience of learning to program.

Thriving. The first account is of a student who thrives on the

feedback provided.

It’s incredibly satisfying when your program works
Taking a Computer Science unit this semester on learning how to program
was my favourite unit. The labs were interesting and well paced. Large
seemingly impossible tasks were broken down into manageable chunks. The
learning curve was good.
Programming can be difficult at first. It is annoying when your program
doesn’t work, and you spend ages trying to figure our why. First you have
to work out how to translate the task to be done into computer code, and

Rachel Cardell-Oliver

206

then you have to fix any bugs (mistakes). There is software we can run that
shows you the bugs in your program. Then you have to find out what is
causing each one and fix it. The main thing I have learnt is how to find and
fix bugs. Bugs can seem to come from nowhere, for no reason. But there is
always a logical reason behind a bug. It is incredibly satisfying when your
program does work. That’s the feeling that motivates me to work hard.
The final project was the most enjoyable and interesting part of the unit
since it was the most challenging. I was able to show that I could solve
problems that I could never have tackled at the start.

Surviving. The second narrative concerns a performance-directed

learner whose focus is on what has to be done to achieve good

marks.

Just tell me what I need to do
At school I was in the top group and now I want good marks in my
Computer Science degree at university. It is important for me to know
exactly what I need to do. I check the requirements for assessments
carefully and ask for clarification if I am not sure. I focus on the assessed
tasks. But I do not submit the non-assessed weekly labs because I am also
busy with other work.
I like the feedback provided in my programming unit to identify bugs in
your assignments. It makes it clear exactly what we are expected to do ...
most of the time. I don’t understand why I failed the first project (24/50)
when everything ran okay minus a few small parts. The project was pretty
good otherwise. I put a lot of effort into that project and was quite confident
for at least 60%.
I was upset about my project mark. So I contacted the lecturer and asked her
why I had not passed. She said, “Bugs do matter. Focus on how to find and
fix them.” I am also expected to be able to explain what I have written and
to make changes to it. That is focussing on minor problems, which I don’t
really care about. Still, if those are the rules, I’ll live with them. I did better
in the second project.
I focus my exam study on past papers. I did well in the mid-semester test
and exam, so that seems to be a good strategy. I am happy with my final
mark of 68% for the unit.

Drowning. The third narrative describes a student who is working

hard and appears to be managing but who, in fact, has failed to

understand fundamental concepts.

How Students Experience Learning to Program

207

Not Waving but Drowning
I am optimistic and hardworking and I have decided to study Computer
Science at university. My programming unit is going well - not brilliant but
OK. I attend all lectures and lab classes. I do the weekly practical work and
submit it, whether complete or not. Sometimes I can’t work out how to do a
step. There is software we can run that shows you the bugs in your program.
Sometimes my programming assignments fail these checks. Then I leave a
note for myself so I can come back to it. But I never do get time for that.
This semester has been hard because there is a lot going on for me at the
moment. My wallet and phone were stolen and there were insurance
problems. Then my laptop kept crashing, so I had to go into town on the bus
to get it fixed and I had to wait three hours to see someone. Half the day
gone when I needed to work on my assignment. I spent four hours the next
day getting one small part of the assignment to work. A friend told me,
“Programming is like that. You keep trying and trying and sometimes it
takes a long time.”
Now it is exam time. I looked over my mid-semester test before the exam.
That was useful. I am disappointed that I failed this unit, because I thought
it would work out in the end. I thought I understood what was required of
me.

Lost. The final narrative concerns a low-achieving learner who

became lost early on and never catches up.

Completely Lost
I am taking a Computer Programming unit this semester. It is not a core unit
for my degree in Engineering but I thought it would be useful to know how
to program.
I haven’t been able to do any of the lab exercises. My first project was three
days late. I had a panic attack and I was not able to finish it. There is
software we can run that tells you that you’ve made a mistake. But I don’t
know what to do about mistakes when they are pointed out. I feel helpless.
Talking my programming problems through with the lab tutor showed me
that I could do some things after all. Then I felt better. But although I can
follow when my tutor explains, I don’t know where to start when I try it for
myself.
Other subjects have higher priority for my degree than this one. I tried to
study to bring up my grade in programming but once you get behind it is
impossible to catch up. I wish I had realised much earlier that this unit
wouldn’t work out for me.

Rachel Cardell-Oliver

208

Implications for Learning

The four narratives in this paper describe different ways in which

students experience learning to program. The second research

question of this paper is what are the implications of these

experiences for student learning? That question is answered here in

terms of the conceptual framework for learning that was outlined at

the start of the paper.

Thriving

All students encounter problems when learning to program. The

thriving student has a positive perception of their ability to deal with

problems, and effective strategies for overcoming problems when

they are encountered. Therefore their learning thrives. Kinnunen and

Simon [2012] identified a similar phenomenon in students’

perception that “even though I am struggling now, I know I can get

there”. The thriving student is good at monitoring their progress and

adjusting their approach to learning where necessary (“the main

thing I have learnt is . . . ”). They have effective strategies for

organising their knowledge. Motivated by getting their programs to

work (“that’s the feeling that motivates me to work hard” [my

emphasis]), they acquire and practice component skills, and practice

integrating those skills. A risk for the thriving student is that they

resent over-specified tasks, and may become bored and demotivated.

Therefore, it is important for courses to include open-ended activities

to motivate the thriving student.

Surviving

The motivation of the surviving student is extrinsic. This student’s

learning is driven by the course assessment criteria. The surviving

student demonstrates two behaviours that support learning. They are

motivated by success (“I want good marks”) and so they practice the

component skills of computer programming (“I put a lot of effort

into that project”). They may have poor skills in organising

knowledge (“I don’t understand why I failed the first project (24/50)”

[my emphasis]). A risk for these students is that typical methods for

assessing programming assignments may reward shallow

How Students Experience Learning to Program

209

approaches. Kolikant and Mussai [2008, p. 135] studied this

phenomena, concluding:

“We found that students conceptualized program correctness as the

sum of the correctness of its constituent operations and, therefore,

they rarely considered programs as incorrect. Instead, as long as they

had any operations written correctly students considered the program

’partially correct’. We suggest that this conception is a faulty

extension of the concept of a program’s grade, which is usually

calculated as the sum of points awarded for separate aspects of a

program. Thus school (unintentionally) nurtures students’

misconception of correctness.”

The surviving student is not aware of gaps in their knowledge

structures (“I was quite confident ... everything ran okay minus a few

small parts”). Their analysis of their learning skills focusses on

optimising performance in assessments (“I study past papers”).

Further, since their prior learning has rewarded this performance-

driven approach, they are reluctant to change it (“if those are the

rules, I will live with them”). As a result, they miss the opportunity

for deeper learning by better organising their knowledge structures

and integrating the skills they have learnt.

Drowning

The title of the drowning narrative is taken from a poem by Stevie

Smith called Not Waving but Drowning, in which a man swimming

in the sea drowns because, although he signalled for help, onlookers

thought he was just waving to them. The drowning student

demonstrates two behaviours that support learning. They are well

motivated and they invest time and effort to practice the component

skills for computer programming (“I attend all the lectures and lab

classes. I do the weekly practical work”). However, their learning is

hindered by misinterpreting the feedback they receive and their

inability to analyse their learning and adjust their strategies (“My

programming unit is going well”). This behaviour may be reinforced

by strategies that have worked well in prior learning but that break

down when learning computer programming (“I leave a note for

myself so I can come back to it”). Their learning strategies tend to be

shallow (“I looked over my mid-semester test” [my emphasis]). They

Rachel Cardell-Oliver

210

have poor organisation of the knowledge they have, tending to piece

things together (“you keep trying and trying”) rather than structuring

their knowledge. The drowning student experiences many

distractions (fixing the laptop, insurance problems). These may be

unconscious avoidance strategies. They are also hampered by poor

advice they receive from other students. For example the friend who

said programming just involves trying and trying until it works

undermines the idea that finding bugs is a logical process. That

advice reinforced the drowning student’s poor learning strategies.

Lost

The lost student demonstrates two types of behaviour that could

support learning. They start with the motivation to succeed (“I

thought it would be useful to know how to program”), and they come

to the subject with learning strategies that have served them well in

the past (“I tried to study to bring up my grade in programming”).

However, they also have many strategies that hinder their learning.

They are able to monitor their learning to some extent (“Talking my

problems through with my the lab tutor”). They recognise, from the

feedback they receive, that they are not achieving the learning

objectives set for them (“I don’t know what to do about mistakes

when they are pointed out”). However, their emotional responses

when faced with difficulties prevent them from adjusting their

learning strategies (“I had a panic attack” and “I feel helpless”).

Their response to difficulties is one of panic and avoidance (e.g.

focussing on other subjects), which leads to poor results and then lost

motivation. Their approach is again emotional in face-to-face

learning situations (“I felt better”), but without the ability to learn

from these. Furthermore, their selective approach to completing

learning activities means that they receive insufficient practice in

component skills and as a result they consistently underestimate the

time and effort required to complete larger tasks (“Other subjects

have higher priority”). In summary, lost learners have the potential to

succeed, but are hindered by their inability to identify how and when

to respond to the problems they encounter.

How Students Experience Learning to Program

211

Commonalities and Differences

Each narrative is associated with a distinctive signature of effective

and ineffective learning behaviours. A common theme in all four

narratives is that getting programs to “work” is the dominant

motivation for students. However, given the same feedback, students

differed in their responses when their programs did not work. While

the thriving student is able to analyse and overcome the problems

(“seemingly impossible tasks were broken down into manageable

chunks”) the lost student suffers from loss of motivation and feelings

of helplessness (“I don’t know where to start when I try it for

myself”). Contrasting reactions to challenges (e.g. “Jane sees 50

compiler errors as a challenge. John sees them as defeat.”) can be

understood in terms of students’ self-theories: whether they have a

growth mindset or a fixed mindset (Simon et al. 2008).

Another common theme in the narratives is that learning experiences

and strategies that have worked for students in the past can hamper

their progress when they learn programming (“I thought the project

was pretty good”, “I do not submit the non-assessed weekly labs”

and “Other subjects have higher priority”). For the drowning and lost

student, the inability to identify correctly where their learning

problems lay was critical (“I am disappointed that I failed this unit,

because I thought it would work out in the end” and “I wish I had

realised much earlier that this unit wouldn’t work out for me.”).

A third common theme is that emotional responses were

(surprisingly) significant in students’ experience of learning to

program. Negative feelings of being overwhelmed by external and

internal pressures dominated for the drowning and lost student (“I

feel helpless” and “Half the day gone when I needed to work on my

assignment”). Positive feelings dominated for the thriving and

surviving student (“it is incredibly satisfying when your program

does work” and “I am happy with my final mark”). Kinnunen and

Simon [2012] also found that emotional experiences dominated

students’ experience of learning to program.

Narratives can be used to identify common themes in students’

experience. But it should be remembered that the narratives are

drawn from distinctive, individual experiences. Since every learner is

Rachel Cardell-Oliver

212

uniquely situated, the differences between students’ accounts are also

important in trying to understand learning (Haggis 2004).

Application

Narratives enable experiences to be seen in a holistic and integrated

way, in the speakers’ voice. The sense of being there makes the

observations immediately useable by students, teachers and

researchers. Research narratives should produce some useable

practices and also “evoke emotions in the reader, to restore from the

sediments of memory similar personal experiences and mental

images or to alter the reader’s prevalent mind-set” (Heikkinen,

Huttunen and Syrjala 2007, p 8). Evocativeness has also been

described as the ability to “have another participant read the account

and to respond to such questions as ‘What do you make of it for your

teaching (or other) situation?’” (Connelly and Clandinin 1990, p 8).

I envisage that the four narratives of this paper can be used in

practice in several ways. First, the narratives can be used in training

sessions with tutors and lab demonstrators to alert them to the types

of student experiences that lie behind the questions they will be

asked in class. Second, I plan to use these narratives to inform

changes to the current course organisation to reduce the problems

that overwhelm some students. I believe that these narratives will

also resonate with others’ experiences and can be used to inform

their teaching and learning. The experience of students in the United

States, as reported by Kinnunen and Simon [2012], concurs with the

experiences of the Australian students in our narratives. This

suggests that the identified phenomena are general ones, with cross-

cultural relevance. Third, these narratives provide a new way for

researchers to understand the complex question of how students learn

computer programming. More generally, these narratives help others

to recognise the mix of behaviours shown by succeeding or failing

students.

Gender aspects of the thriving, surviving, drowning or lost

experiences are beyond the scope of this paper, but would be an

interesting area for future work. For engineering students, the belief

that engineering aptitude as a fixed ability, which in turn is

associated with a tendency to drop classes when faced with difficulty

How Students Experience Learning to Program

213

has been found to have a gender bias, as has emphasis on instrinsic

rather than extrinsic factors (Heyman et al 2001).

Conclusions

This paper addresses two questions about learning to program: What

are the different ways in which students experience their

programming courses? and What are the implications of these

experiences for student learning? To answer the first question, I

constructed narratives, based on an analysis of learning artefacts

from the course. The narratives describe four types of student

experience when learning to program: thriving, surviving, drowning

and lost. Although three of these categories are well known from the

general literature on learning, the not waving but drowning

experience seems to have particular resonance for computer

programming students. Analysis of the narratives in terms of a

conceptual framework of how students learn provides insights into

the second question of why computer programming students thrive

or not. These insights were not apparent in previous quantitative and

theoretical studies.

The main findings of this paper concern students’ motivation and

learning strategies. Getting programs to work is the dominant

motivation for most students. Emotional responses are a significant

part of the experience of learning to program. Students differ in the

ways their prior learning experiences and strategies either help or

hinder them when learning to program. Traditional ways of setting

and assessing programming assignments and exams may mislead

students and lecturers about students’ progress. The findings reported

in this paper offer insights towards better understanding of these

complex problems.

Ethics Clearance

This research has been assessed and granted exemption from full

Human Research Ethics review for this project (14 June 2013)

RA/4/1/6236 titled Formative Feedback and Automated Assessment

for Learning Computer Programming.

Rachel Cardell-Oliver

214

Acknowledgements

This work is supported by Teaching Fellowship grant F12047-2010

from the University of Western Australia. The author would like to

thank H. Wildy, E. Chapman, C. Baillie, the anonymous referees,

and members of the UWA Engineering Education Writing Group

and the Faculty Academy for the Scholarship of Education for their

valuable discussions and feedback on this paper.

References

Ambrose, S.A., Bridges, M.W., Di Pietro, M., Lovett, M.C. and

Norman, M.K. (2010) How Learning Works: Seven

Research-Based Principles for Smart Teaching. John Wiley

& Sons, 2010. ISBN 978-0-470-61760-1 (epub).

Booth, S. (1993) A study of learning to program from an experiential

perspective. Computers in Human Behavior, 9(23):185–202,

1993. ISSN 0747-5632. doi: http://dx.doi.org/10.1016/0747-

5632(93)90006-E.

Bruce, C., Buckingham, L., Hynd, J., McMahon C., Roggenkamp,

M., and Stoodley, I. (2004) Ways of experiencing the act of

learning to program: A phenomenographic study of

introductory programming students at university. JITE,

3:143–160, 2004.

Cardell-Oliver, R. (2013) Evaluating the application and

understanding of elementary programming patterns. In

Proceedings of the 22nd Australasian Software Engineering

Conference (ASWEC), 2013, pages 60–67, 2013. doi:

10.1109/ASWEC.2013.17.

Cardell-Oliver, R. (2011). How can software metrics help novice

programmers? In John Hamer and Michael de Raadt, editors,

Australasian Computing Education Conference (ACE 2011),

volume 114 of CRPIT, pages 55–62, Perth, Australia, 2011.

URL http://crpit.com/confpapers/CRPITV114Cardell-

Oliver.pdf.

Cardell-Oliver, R., Zhang, L., Barady, R., Lim, Y.H., Naveed, A.,

and Woodings, T. (2010) Automated feedback for quality

assurance in software engineer- ing education. In

Proceedings of the 2010 21st Australasian Software

How Students Experience Learning to Program

215

Engineering Conference, ASWEC ’10, pages 157–164,

Washington, DC, USA, 2010. IEEE Computer Society.

ISBN 978-0-7695-4006-1. doi: http://dx.doi.org/10.1109/

ASWEC.2010.24.

Caspersen, M.E. and Bennedsen, J. (2007) Instructional design of a

programming course: a learning theoretic approach. In

Proceedings of the Third international Workshop on

Computing Education Research, ICER ’07, pages 111–122,

New York, NY, USA, 2007. ACM. ISBN 978-1-59593-841-

1. doi: 10.1145/ 1288580.1288595.

Clandinin, D. J., & Huber, J. (2010). Narrative inquiry. In B.

McGaw, E. Baker, & P. P. Peterson (Eds.), International

Encyclopedia of Education (3rd ed.). New York, NY:

Elsevier, p 436-441.

Connelly, F. Michael, and Clandinin, D. Jean (1990). Stories of

Experience and Narrative Enquiry, Educational Researcher,

19: 2, doi: 10.3102/0013189X019005002

Haggis, T. (2004). Meaning, identity and ‘motivation’: expanding

what matters in understanding learning in higher

education?. Studies in Higher Education,29 (3), 335-352.

Hammersley, M. (1993) On the teacher as researcher. Educational

Action Research, 1(3), 425-445.

Hammersley, M. (1981), The Outsider's Advantage: a reply to

McNamara. British Educational Research Journal, 7: 167–

171. doi: 10.1080/0141192810070205

Heikkinen, H., Huttunen, R., & Syrjala, L. (2007). Action research as

narrative: Five principles for validation. Educational Action

Research, 15(1), 5–19. doi: 10.1080/ 09650790601150709

Heyman, G. D. Martyna B. and Bhatia. S. (2002) Gender and

achievement-related beliefs among engineering students.

Journal of Woman and Minorities in Science and

Engineering, 8:41-52

Kinnunen, P. and Simon, B. (2010) Experiencing programming

assignments in CS1: the emotional toll. In Proceedings of the

Sixth international workshop on Computing Education

Research, ICER ’10, pages 77–86, New York, NY, USA,

2010. ACM. ISBN 978-1-4503-0257-9. doi:

http://doi.acm.org/10.1145/1839594. 1839609.

Rachel Cardell-Oliver

216

Kinnunen, P. and Simon, B. (2012) My program is OK - am I?

Computing Freshmen’s Experiences of Doing Programming

Assignments. Computer Science Education, 22(1):1–28,

2012. doi: 10.1080/08993408.2012.655091.

Kolikant, Ben-David Y. and M. Mussai, M. (2008) ’So my program

doesn’t run!’ definition, origins, and practical expressions of

students’ (mis)conceptions of correctness. Computer Science

Education, 18:135–151.

McNamara, David R. (1980) The Outsider's Arrogance: the failure

of participant observers to understand classroom events,

British Educational Research Journal, 6:113-125.

doi:10.1080/0141192800060201

Petersen, A., Craig, M., and Zingaro, D. (2011) Reviewing CS1

exam question content. In Proceedings of the 42nd ACM

Technical Symposium on Computer Science Education,

SIGCSE ’11, pages 631–636, New York, NY, USA, 2011.

ACM. ISBN 978-1-4503-0500-6. doi:

10.1145/1953163.1953340.

Robins, A. (2010) Learning edge momentum: a new account of

outcomes in CS1. Computer Science Education, 20(1):37–

71, March 2010. doi: 10.1080/08993401003612167.

Simon, B., Hanks, B., Murphy, L., Fitzgerald, S., McCauley, R.,

Thomas. L., and Zander, C. (2008) Saying isn't necessarily

believing: influencing self-theories in computing.

Proceedings of the Fourth international Workshop on

Computing Education Research (ICER '08). ACM, New

York, NY, USA, 173-184. doi: 10.1145/1404520.1404537

http://www.researchgate.net/researcher/2002856121_David_R_McNamara
http://www.researchgate.net/journal/1469-3518_British_Educational_Research_Journal

